A novel drill set for the enhancement and assessment of robotic surgical performance.
نویسندگان
چکیده
BACKGROUND There currently exist several training modules to improve performance during video-assisted surgery. The unique characteristics of robotic surgery make these platforms an inadequate environment for the development and assessment of robotic surgical performance. METHODS Expert surgeons (n=4) (>50 clinical robotic procedures and >2 years of clinical robotic experience) were compared to novice surgeons (n=17) (<5 clinical cases and limited laboratory experience) using the da Vinci Surgical System. Seven drills were designed to simulate clinical robotic surgical tasks. Performance score was calculated by the equation Time to Completion + (minor error) x 5 + (major error) x 10. The Robotic Learning Curve (RLC) was expressed as a trend line of the performance scores corresponding to each repeated drill. RESULTS Performance scores for experts were better than novices in all 7 drills (p<0.05). The RLC for novices reflected an improvement in scores (p<0.05). In contrast, experts demonstrated a flat RLC for 6 drills and an improvement in one drill (p=0.027). CONCLUSION This new drill set provides a framework for performance assessment during robotic surgery. The inclusion of particular drills and their role in training robotic surgeons of the future awaits larger validation studies.
منابع مشابه
SIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames
Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...
متن کاملA New Robust Bootstrap Algorithm for the Assessment of Common Set of Weights in Performance Analysis
The performance of the units is defined as the ratio of the weighted sum of outputs to the weighted sum of inputs. These weights can be determined by data envelopment analysis (DEA) models. The inputs and outputs of the related (Decision Making Unit) DMU are assessed by a set of the weights obtained via DEA for each DMU. In addition, the weights are not generally common, but rather, they are ve...
متن کاملReliability analysis of a robotic system using hybridized technique
In this manuscript, the reliability of a robotic system has been analyzed using the available data (containing vagueness, uncertainty, etc). Quantification of involved uncertainties is done through data fuzzification using triangular fuzzy numbers with known spreads as suggested by system experts. With fuzzified data, if the existing fuzzy lambda–tau (FLT) technique is employed, then the comput...
متن کاملA Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement
A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...
متن کاملA novel ranking method for intuitionistic fuzzy set based on information fusion and application to threat assessment
A novel ranking method based on multi-time information fusion is proposed for intuitionistic fuzzy sets (IFSs) and applied to the threat assessment problem, a multi-attribute decision making (MADM) one. This method integrates a designed intuitionistic fuzzy entropy (IFE), the closeness degree of technique for order preference by similarity to ideal solution (TOPSIS), the decision maker¡¯s (DM¡¯...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Studies in health technology and informatics
دوره 111 شماره
صفحات -
تاریخ انتشار 2005